Searx 搜索(Searx Search)




您可以查看此链接 (opens in a new tab)以获取有关Searx API参数的更多信息。

import pprint
from langchain.utilities import SearxSearchWrapper
search = SearxSearchWrapper(searx_host="")


search.run("What is the capital of France")
'Paris is the capital of France, the largest country of Europe with 550 000 km2 (65 millions inhabitants). Paris has 2.234 million inhabitants end 2011. She is the core of Ile de France region (12 million people).'


SearxNG支持多达139个搜索引擎 (opens in a new tab)。您还可以使用任意命名的参数自定义Searx包装器,这些参数将传递给Searx搜索API。在下面的示例中,我们将更有趣地使用searx搜索api的自定义搜索参数。


search = SearxSearchWrapper(searx_host="", k=5) # k is for max number of items
search.run("large language model ", engines=['wiki'])
'Large language models (LLMs) represent a major advancement in AI, with the promise of transforming domains through learned knowledge. LLM sizes have been increasing 10X every year for the last few years, and as these models grow in complexity and size, so do their capabilities.  GPT-3 can translate language, write essays, generate computer code, and more — all with limited to no supervision. In July 2020, OpenAI unveiled GPT-3, a language model that was easily the largest known at the time. Put simply, GPT-3 is trained to predict the next word in a sentence, much like how a text message autocomplete feature works.  A large language model, or LLM, is a deep learning algorithm that can recognize, summarize, translate, predict and generate text and other content based on knowledge gained from massive datasets. Large language models are among the most successful applications of transformer models.  All of today’s well-known language models—e.g., GPT-3 from OpenAI, PaLM or LaMDA from Google, Galactica or OPT from Meta, Megatron-Turing from Nvidia/Microsoft, Jurassic-1 from AI21 Labs—are...  Large language models (LLMs) such as GPT-3are increasingly being used to generate text. These tools should be used with care, since they can generate content that is biased, non-verifiable, constitutes original research, or violates copyrights.'


search = SearxSearchWrapper(searx_host="", k=1)
search.run("deep learning", language='es', engines=['wiki'])
'Aprendizaje profundo (en inglés, deep learning) es un conjunto de algoritmos de aprendizaje automático (en inglés, machine learning) que intenta modelar abstracciones de alto nivel en datos usando arquitecturas computacionales que admiten transformaciones no lineales múltiples e iterativas de datos expresados en forma matricial o tensorial. 1'




search = SearxSearchWrapper(searx_host="")
results = search.results("Large Language Model prompt", num_results=5, categories='science', time_range='year')
[{'snippet': '… on natural language instructions, large language models (… the '
             'prompt used to steer the model, and most effective prompts … to '
             'prompt engineering, we propose Automatic Prompt …',
  'title': 'Large language models are human-level prompt engineers',
  'link': 'https://arxiv.org/abs/2211.01910',
  'engines': ['google scholar'],
  'category': 'science'},
 {'snippet': '… Large language models (LLMs) have introduced new possibilities '
             'for prototyping with AI [18]. Pre-trained on a large amount of '
             'text data, models … language instructions called prompts. …',
  'title': 'Promptchainer: Chaining large language model prompts through '
           'visual programming',
  'link': 'https://dl.acm.org/doi/abs/10.1145/3491101.3519729',
  'engines': ['google scholar'],
  'category': 'science'},
 {'snippet': '… can introspect the large prompt model. We derive the view '
             'ϕ0(X) and the model h0 from T01. However, instead of fully '
             'fine-tuning T0 during co-training, we focus on soft prompt '
             'tuning, …',
  'title': 'Co-training improves prompt-based learning for large language '
  'link': 'https://proceedings.mlr.press/v162/lang22a',
  'engines': ['google scholar'],
  'category': 'science'},
 {'snippet': '… With the success of large language models (LLMs) of code and '
             'their use as … prompt design process become important. In this '
             'work, we propose a framework called Repo-Level Prompt …',
  'title': 'Repository-level prompt generation for large language models of '
  'link': 'https://arxiv.org/abs/2206.12839',
  'engines': ['google scholar'],
  'category': 'science'},
 {'snippet': '… Figure 2 | The benefits of different components of a prompt '
             'for the largest language model (Gopher), as estimated from '
             'hierarchical logistic regression. Each point estimates the '
             'unique …',
  'title': 'Can language models learn from explanations in context?',
  'link': 'https://arxiv.org/abs/2204.02329',
  'engines': ['google scholar'],
  'category': 'science'}]


results = search.results("Large Language Model prompt", num_results=5, engines=['arxiv'])
[{'snippet': 'Thanks to the advanced improvement of large pre-trained language '
             'models, prompt-based fine-tuning is shown to be effective on a '
             'variety of downstream tasks. Though many prompting methods have '
             'been investigated, it remains unknown which type of prompts are '
             'the most effective among three types of prompts (i.e., '
             'human-designed prompts, schema prompts and null prompts). In '
             'this work, we empirically compare the three types of prompts '
             'under both few-shot and fully-supervised settings. Our '
             'experimental results show that schema prompts are the most '
             'effective in general. Besides, the performance gaps tend to '
             'diminish when the scale of training data grows large.',
  'title': 'Do Prompts Solve NLP Tasks Using Natural Language?',
  'link': 'http://arxiv.org/abs/2203.00902v1',
  'engines': ['arxiv'],
  'category': 'science'},
 {'snippet': 'Cross-prompt automated essay scoring (AES) requires the system '
             'to use non target-prompt essays to award scores to a '
             'target-prompt essay. Since obtaining a large quantity of '
             'pre-graded essays to a particular prompt is often difficult and '
             'unrealistic, the task of cross-prompt AES is vital for the '
             'development of real-world AES systems, yet it remains an '
             'under-explored area of research. Models designed for '
             'prompt-specific AES rely heavily on prompt-specific knowledge '
             'and perform poorly in the cross-prompt setting, whereas current '
             'approaches to cross-prompt AES either require a certain quantity '
             'of labelled target-prompt essays or require a large quantity of '
             'unlabelled target-prompt essays to perform transfer learning in '
             'a multi-step manner. To address these issues, we introduce '
             'Prompt Agnostic Essay Scorer (PAES) for cross-prompt AES. Our '
             'method requires no access to labelled or unlabelled '
             'target-prompt data during training and is a single-stage '
             'approach. PAES is easy to apply in practice and achieves '
             'state-of-the-art performance on the Automated Student Assessment '
             'Prize (ASAP) dataset.',
  'title': 'Prompt Agnostic Essay Scorer: A Domain Generalization Approach to '
           'Cross-prompt Automated Essay Scoring',
  'link': 'http://arxiv.org/abs/2008.01441v1',
  'engines': ['arxiv'],
  'category': 'science'},
 {'snippet': 'Research on prompting has shown excellent performance with '
             'little or even no supervised training across many tasks. '
             'However, prompting for machine translation is still '
             'under-explored in the literature. We fill this gap by offering a '
             'systematic study on prompting strategies for translation, '
             'examining various factors for prompt template and demonstration '
             'example selection. We further explore the use of monolingual '
             'data and the feasibility of cross-lingual, cross-domain, and '
             'sentence-to-document transfer learning in prompting. Extensive '
             'experiments with GLM-130B (Zeng et al., 2022) as the testbed '
             'show that 1) the number and the quality of prompt examples '
             'matter, where using suboptimal examples degenerates translation; '
             '2) several features of prompt examples, such as semantic '
             'similarity, show significant Spearman correlation with their '
             'prompting performance; yet, none of the correlations are strong '
             'enough; 3) using pseudo parallel prompt examples constructed '
             'from monolingual data via zero-shot prompting could improve '
             'translation; and 4) improved performance is achievable by '
             'transferring knowledge from prompt examples selected in other '
             'settings. We finally provide an analysis on the model outputs '
             'and discuss several problems that prompting still suffers from.',
  'title': 'Prompting Large Language Model for Machine Translation: A Case '
  'link': 'http://arxiv.org/abs/2301.07069v2',
  'engines': ['arxiv'],
  'category': 'science'},
 {'snippet': 'Large language models can perform new tasks in a zero-shot '
             'fashion, given natural language prompts that specify the desired '
             'behavior. Such prompts are typically hand engineered, but can '
             'also be learned with gradient-based methods from labeled data. '
             'However, it is underexplored what factors make the prompts '
             'effective, especially when the prompts are natural language. In '
             'this paper, we investigate common attributes shared by effective '
             'prompts. We first propose a human readable prompt tuning method '
             '(F LUENT P ROMPT) based on Langevin dynamics that incorporates a '
             'fluency constraint to find a diverse distribution of effective '
             'and fluent prompts. Our analysis reveals that effective prompts '
             'are topically related to the task domain and calibrate the prior '
             'probability of label words. Based on these findings, we also '
             'propose a method for generating prompts using only unlabeled '
             'data, outperforming strong baselines by an average of 7.0% '
             'accuracy across three tasks.',
  'title': "Toward Human Readable Prompt Tuning: Kubrick's The Shining is a "
           'good movie, and a good prompt too?',
  'link': 'http://arxiv.org/abs/2212.10539v1',
  'engines': ['arxiv'],
  'category': 'science'},
 {'snippet': 'Prevailing methods for mapping large generative language models '
             "to supervised tasks may fail to sufficiently probe models' novel "
             'capabilities. Using GPT-3 as a case study, we show that 0-shot '
             'prompts can significantly outperform few-shot prompts. We '
             'suggest that the function of few-shot examples in these cases is '
             'better described as locating an already learned task rather than '
             'meta-learning. This analysis motivates rethinking the role of '
             'prompts in controlling and evaluating powerful language models. '
             'In this work, we discuss methods of prompt programming, '
             'emphasizing the usefulness of considering prompts through the '
             'lens of natural language. We explore techniques for exploiting '
             'the capacity of narratives and cultural anchors to encode '
             'nuanced intentions and techniques for encouraging deconstruction '
             'of a problem into components before producing a verdict. '
             'Informed by this more encompassing theory of prompt programming, '
             'we also introduce the idea of a metaprompt that seeds the model '
             'to generate its own natural language prompts for a range of '
             'tasks. Finally, we discuss how these more general methods of '
             'interacting with language models can be incorporated into '
             'existing and future benchmarks and practical applications.',
  'title': 'Prompt Programming for Large Language Models: Beyond the Few-Shot '
  'link': 'http://arxiv.org/abs/2102.07350v1',
  'engines': ['arxiv'],
  'category': 'science'}]

在此示例中,我们查询it类别下的large language models,然后过滤来自github的结果。

results = search.results("large language model", num_results = 20, categories='it')
pprint.pp(list(filter(lambda r: r['engines'][0] == 'github', results)))
[{'snippet': 'Guide to using pre-trained large language models of source code',
  'title': 'Code-LMs',
  'link': 'https://github.com/VHellendoorn/Code-LMs',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Dramatron uses large language models to generate coherent '
             'scripts and screenplays.',
  'title': 'dramatron',
  'link': 'https://github.com/deepmind/dramatron',
  'engines': ['github'],
  'category': 'it'}]


results = search.results("large language model", num_results = 20, engines=['github', 'gitlab'])
[{'snippet': "Implementation of 'A Watermark for Large Language Models' paper "
             'by Kirchenbauer & Geiping et. al.',
  'title': 'Peutlefaire / LMWatermark',
  'link': 'https://gitlab.com/BrianPulfer/LMWatermark',
  'engines': ['gitlab'],
  'category': 'it'},
 {'snippet': 'Guide to using pre-trained large language models of source code',
  'title': 'Code-LMs',
  'link': 'https://github.com/VHellendoorn/Code-LMs',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': '',
  'title': 'Simen Burud / Large-scale Language Models for Conversational '
           'Speech Recognition',
  'link': 'https://gitlab.com/BrianPulfer',
  'engines': ['gitlab'],
  'category': 'it'},
 {'snippet': 'Dramatron uses large language models to generate coherent '
             'scripts and screenplays.',
  'title': 'dramatron',
  'link': 'https://github.com/deepmind/dramatron',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Code for loralib, an implementation of "LoRA: Low-Rank '
             'Adaptation of Large Language Models"',
  'title': 'LoRA',
  'link': 'https://github.com/microsoft/LoRA',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Code for the paper "Evaluating Large Language Models Trained on '
  'title': 'human-eval',
  'link': 'https://github.com/openai/human-eval',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'A trend starts from "Chain of Thought Prompting Elicits '
             'Reasoning in Large Language Models".',
  'title': 'Chain-of-ThoughtsPapers',
  'link': 'https://github.com/Timothyxxx/Chain-of-ThoughtsPapers',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Mistral: A strong, northwesterly wind: Framework for transparent '
             'and accessible large-scale language model training, built with '
             'Hugging Face 🤗 Transformers.',
  'title': 'mistral',
  'link': 'https://github.com/stanford-crfm/mistral',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'A prize for finding tasks that cause large language models to '
             'show inverse scaling',
  'title': 'prize',
  'link': 'https://github.com/inverse-scaling/prize',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Optimus: the first large-scale pre-trained VAE language model',
  'title': 'Optimus',
  'link': 'https://github.com/ChunyuanLI/Optimus',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Seminar on Large Language Models (COMP790-101 at UNC Chapel '
             'Hill, Fall 2022)',
  'title': 'llm-seminar',
  'link': 'https://github.com/craffel/llm-seminar',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'A central, open resource for data and tools related to '
             'chain-of-thought reasoning in large language models. Developed @ '
             'Samwald research group: https://samwald.info/',
  'title': 'ThoughtSource',
  'link': 'https://github.com/OpenBioLink/ThoughtSource',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'A comprehensive list of papers using large language/multi-modal '
             'models for Robotics/RL, including papers, codes, and related '
  'title': 'Awesome-LLM-Robotics',
  'link': 'https://github.com/GT-RIPL/Awesome-LLM-Robotics',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Tools for curating biomedical training data for large-scale '
             'language modeling',
  'title': 'biomedical',
  'link': 'https://github.com/bigscience-workshop/biomedical',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'ChatGPT @ Home: Large Language Model (LLM) chatbot application, '
             'written by ChatGPT',
  'title': 'ChatGPT-at-Home',
  'link': 'https://github.com/Sentdex/ChatGPT-at-Home',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Design and Deploy Large Language Model Apps',
  'title': 'dust',
  'link': 'https://github.com/dust-tt/dust',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Polyglot: Large Language Models of Well-balanced Competence in '
  'title': 'polyglot',
  'link': 'https://github.com/EleutherAI/polyglot',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'Code release for "Learning Video Representations from Large '
             'Language Models"',
  'title': 'LaViLa',
  'link': 'https://github.com/facebookresearch/LaViLa',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'SmoothQuant: Accurate and Efficient Post-Training Quantization '
             'for Large Language Models',
  'title': 'smoothquant',
  'link': 'https://github.com/mit-han-lab/smoothquant',
  'engines': ['github'],
  'category': 'it'},
 {'snippet': 'This repository contains the code, data, and models of the paper '
             'titled "XL-Sum: Large-Scale Multilingual Abstractive '
             'Summarization for 44 Languages" published in Findings of the '
             'Association for Computational Linguistics: ACL-IJCNLP 2021.',
  'title': 'xl-sum',
  'link': 'https://github.com/csebuetnlp/xl-sum',
  'engines': ['github'],
  'category': 'it'}]